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Recently, we reported the isolation of aplyronine A (1), a potent 
antitumor substance from the Japanese sea hare Aplysia kurodai, 
and the determination of its gross structure.' In the course of our 
stereochemical study on aplyronine A (1), the absolute stereo­
chemistry of eight asymmetric centers (C23-C26 and C29-C32) 
of the right half of the molecule and the scalemic nature of the 
two amino acids2 were clarified by spectroscopic analysis and the 
enantioselective synthesis of degradation products of I.3 In this 
communication, we report determination of the complete absolute 
stereostructure of aplyronine A (1) on the basis of the enanti­
oselective synthesis of other degradation products. 

Theabsolute stereochemistry of seven asymmetriccarbons(C7, 
C8, C9, ClO, C13, C17, and C19) in 1 remained unknown, and 
these carbons are contained in two degradation products, the 
C5-C14 fragment 2 and the C15-C20 fragment 3.3a>4 We first 
examined the absolute stereochemistry of the C5-C14 fragment 
2, which contains five unassigned asymmetric carbons (C7, C8, 
C9, ClO, and Cl3). The relative stereochemistry of the four 
contiguous asymmetric centers C7-C10 in 2 has been elucidated 
by comparison of 1H NMR data between acetonide 45 derived 
from 2 and the synthetic eight possible diastereomers including 
5:3b the spin-spin coupling constants6 and the chemical shifts6 of 
only the diastereomer 5 were found to be nearly identical to those 
of 4, indicating that the relative stereochemistry of the four 
contiguous asymmetric centers C7-C10 in 2 is anti-syn-anti. 
Previously, we reported that the degradation of 1 afforded the 
C 5-C14 fragments 2 and 2a, the latter being the C14 diastereomer 
of the former.3"'7 One of these natural fragments 2 and 2a must 
be identical with one of the two stereoisomers 2b and 2c, the 
latter being the C13 diastereomer of the former. Thus, attempts 
were made to synthesize both stereoisomers 2b and 2c enanti-
oselectively (Scheme 1). 
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" (a) BnBr, NaH, THF-DMF, room temperature, 96%. (b) 2 N HCl, 
DME, reflux, 100%. (c) TsCl, pyridine, 0 0C. (d) K2CO3, MeOH, 0 0C, 
80% (two steps), (e) 1,3-Dithiane, BuLi, THF, -23 0 C, then 7, room 
temperature, 100%. (f) BnBr, NaH, THF-DMF, room temperature, 88%. 
(g) CuO, CuCl2, acetone-H20, reflux, 85%. (h) NaBH4, EtOH, -29 to 
-20 0C, 97%. (i) J-BuMe2SiCl (TBSCl), imidazole, DMF, room 
temperature, 100%. (j) Li, liquid NH3 , /-PrOH, THF, -78 0 C, 97%. (k) 
Pivaloyl chloride (PivCl), pyridine, 0 0 C, 95%. (1) Me2C(OMe)2, CSA, 
acetone, room temperature, 98%. (m) LiAlH4, Et2O, 0 0 C, 99%. (n) 
(PhS)2, Bu3P, DMF, room temperature, 96%. (o) m-CPBA, CH2Cl2, 
room temperature, 98%. (p) BuLi, THF, 0 0C, then 1 la (or 1 lb), HMPA, 
room temperature, 34% (major isomer) and 11% (minor isomer), (q) 6% 
Na-Hg, Na2HPO4, MeOH, 0 0 C, 90%. (r) MeI, NaH, THF, room 
temperature, 93%. (s) Bu4NF, THF, room temperature, 93%. (t) Na, 
liquid NH3 , THF, -33 0 C, 90%. (u) />-BrC«H4NCO, pyridine, room 
temperature, 100%. (v) AcOH, H2O, room temperature, (w) Ac2O, 
DMAP, pyridine, room temperature, 87% (two steps). 
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Optically pure diol 6,3b which possesses four contiguous 
asymmetric centers, was converted to epoxide 7 (Scheme 1). One-
carbon homologation of 7 with the 1,3-dithianyl anion followed 
by O-benzylation, hydrolysis of the dithioacetal group,8 and 
NaBH4 reduction afforded alcohol 8. By a series of protection-
deprotection reactions, 8 was transformed into alcohol 9, which 
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' (a) O3, MeOH, -78 0C. (b) NaBH4, MeOH, room temperature, 
81 % (two steps), (c) 0-NO2C6H4SeCN, Bu3P, THF, room temperature, 
100%. (d) 30% H2O2, THF, O 0C. (e) OsO4, pyridine, THF, room 
temperature, (f) TsOH, C6H6, room temperature then reflux, 55% (3 
steps), (g) (-BuPh2SiCl, imidazole, DMF, room temperature, 42% (17a) 
and 48% (17b). (h) LiAlH4, Et2O, room temperature, 99%. (i) 
J-BuPh2SiCl, imidazole, DMF, O0C, 75%. (j) CH2N2, silica gel, hexane, 
O 0C, 88%. (k) Bu4NF, THF, room temperature, 90%. (Op-BrC6H4NCO, 
pyridine, room temperature, 100%. 

was further converted into sulfone 10 by a two-step sequence via 
a sulfide.9 Addition10 of the carbanion of 10 to (2R,3S)-3-
(benzyloxy)-l,2-epoxybutane (Ha)11 afforded a separable 3:1 
diastereomeric mixture of 7-hydroxy sulfones. The major isomer 
was subjected to reductive desulfurization followed by O-
methylation to provide methyl ether 12, which was further 
converted to urethane ent-lh in five steps. Urethane ent-2& was 
synthesized from sulfone 10 and (2S,3S)-3-(benzyloxy)-l,2-
epoxybutane (lib)12 by the same sequence of reactions as 
employed for the preparation of ent-2\>. On comparison of the 
spectroscopic data and specific rotations, synthetic urethane ent-
2b ([a]23D -24° (c 0.23, CHCl3)) was found to be identical with 
the natural C5-C14 fragment 2 ([a]17

D +26° (c 0.10, CHCl3)) 
except for the sign of optical rotation, establishing the absolute 
stereochemistry at C7, C8, C9, ClO, and C13. 

We next turned our attention to the C15-C20 fragment 3, 
which possesses two unassigned asymmetric centers (C 17 and 
C19). To determine the absolute stereochemistry of these 
asymmetric centers, we synthesized two possible diastereomeric 
urethanes 3a and 3b (Scheme 2). Ozonolysis of methyl (-)-
(S')-citronellate (13)13 followed by NaBH4 reduction produced 
alcohol 14, which was converted to selenide 15 under the conditions 
of Grieco.14 Oxidation15 of 15 with H2O2 produced an olefin, 

(13)13 was prepared from optically impure (-)-(S)-citronellol, purchased 
from Aldrich Chemical Co., by pyridinium dichromate oxidation and 
methylationwithdiazomethane. 13: [«]20

D-4.5°(c0.995,CHCl3).Optically 
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which was subjected to osmylation followed by acid-induced 
cyclization to provide approximately a 1:1 diastereomeric mixture 
of lactone 16.16 After silylation, the two diastereomers were 
chromatographically separated to give lactones 17a and 17b. The 
relative stereochemistry of these two isomers was determined by 
1H NMR spectral analysis performed on 17b: the axial orientation 
of H19 in 17b was deduced from the spin-spin coupling constants, 
/18,19 = 11-7 and 3.5 Hz, and on irradiation of H19, a 6% NOE 
was observed on the proton at C17, revealing the cis relationship 
of the two substituents at C17 and C19 in 17b. Reduction of 
f/ww-lactone 17a with LiAlH4 provided a triol, which was 
subjected to selective silylation of two primary hydroxyl groups 
followed by 0-methylation with diazomethane-silica gel17 to 
afford the syn product 18. By a two-step sequence, the syn product 
18 was converted into .sy/i-urethane 3a. Transformation of cis-
lactone 17b to anft'-urethane 3b was executed by the same sequence 
of reactions as employed for the preparation of 3a (Scheme 2). 
The 1H NMR spectra of synthetic urethane 3a and the natural 
C15-C20 fragment 3 were identical. The CD spectra of both 3a 
and 3 showed a negative maximum at 251 nm (Ae values, -0.62 
for 3a and -1.17 for 3),18 disclosing the absolute stereochemistry 
at C17 and C19 in 3. 

With the absolute stereochemistry of the two degradation 
products 2 (—2b) and 3 (=3a) in hand, we can now define the 
complete stereostructure of aplyronine A as shown in the formula 
1. 

Interestingly, the absolute stereochemistry of the right half of 
1 is almost identical to that of the corresponding part of 
scytophycin C,19 which was isolated from a blue-green alga. 
Aplyronine A (1) is presumed to be a metabolite of symbiotic 
algae in the sea hare A. kurodai. 
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